DISCRETE MATHEMATICS I

B.MATH 2ND YEAR

END TERM EXAM

INSTRUCTIONS

- Part A contains 10 questions. Each question carries 10 marks each. Answer any 6.
- Part B contains 3 questions. Each question carries 20 marks each. Answer any 2.
- Time limit for the exam is 3 hours.

NOTATIONS

- $\mathbb{N} = \{0, 1, 2, \ldots\}.$
- $[n] = \{1, 2, ..., n\}, \text{ for } n \in \mathbb{N}.$

Part A (10 marks per question, answer any 6)

1. (a) How many 2×2 magic squares of weight k are there?

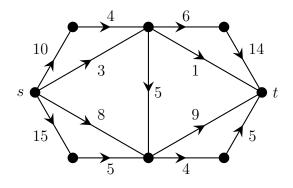
A magic square of weight k is a square matrix with entries from \mathbb{N} , every row and column of which adds up to k.

(b) Consider an $n \times n$ Latin square L with entries from [n]. Prove that L is a magic square. What is the weight of L?

A Latin square is an $n \times n$ matrix with entries from [n], such that no two entries in a row or column are the same.

- 2. The BMath second year students have formed several cliques to study for end semester exams. Every clique consists of 6 students, and every student belongs to exactly 6 cliques.
 - (a) Prove that, the number of students is equal to the number of cliques.
 - (b) Is it possible to choose a student from every clique without choosing any student twice?

- **3.** Let G be a finite simple undirected bipartite graph with more than one vertex. Let A_G be the adjacency matrix of G. Prove that, for every $n \ge 1$, the matrix $(A_G)^n$ has a zero entry.
- 4. Consider the following transportation network with source s and sink t.

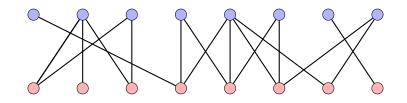


Find a feasible flow in this network with the maximum possible value.

- 5. Let N be a network. Let (S_1, T_1) and (S_2, T_2) be two s t cuts in N with minimum capacity. Prove that all edges between $T_1 \\ and T_2 \\ T_1$ have zero capacity.
- **6.** Let Q_n be the *n*-dimensional cube graph. Prove that Q_n has a Hamiltonian cycle for all $n \ge 2$.

 Q_k is defined as follows: - Q_0 is a graph with a single vertex and no edges. - For all $k \in \mathbb{N}$, the graph Q_{k+1} is the graph constructed by taking two copies of Q_k , then joining every vertex from the first copy to the corresponding vertex in the second copy by an edge.

7. What is the maximum size of a matching in the following bipartite graph?



- 8. Construct a BIBD with each of the following parameters or prove that they can not be constructed:
 - (a) (7, 7, 4, 4, 2)
 - (b) (22, 22, 15, 15, 10)

- **9.** A Steiner triple system is a BIBD with k = 3 and $\lambda = 1$.
 - (a) How many blocks does a Steiner system with v points have?
 - (b) Given any point x, how many of those blocks contain x?
- 10. How many perfect matchings do the following graphs have?
 - (a) The complete graph with 2n vertices, K_{2n} .
 - (b) The 2n length cycle, C_{2n} .

PART B (20 MARKS PER QUESTION, ANSWER ANY 2)

- **11.** (a) Let $\{c_n\}_{n\in\mathbb{N}}$ be a sequence defined by the recurrence relation $c_0 = 4$, $c_1 = 5$, $c_{n+1} = 3c_{n-1} - 6 \quad \forall n \ge 1$. Find the value of c_n for all $n \in \mathbb{N}$.
 - (b) Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence defined by the recurrence relation $a_0 = 0, \qquad a_{n+1} = 2(n+1)a_n + (n+1)! \quad \forall n \in \mathbb{N}.$ Find the value of a_n for all $n \in \mathbb{N}$.
- **12.** Let $S = [15] \times [30]$. Construct the partial order \leq' on the set S as follows: $(a,b) \leq' (c,d)$ if $a \leq c$ and $b \leq d$.
 - (a) What is the minimum size of a chain decomposition of this poset?
 - (b) How many antichains are there with the maximum length?
- 13. How many spanning trees do the following graphs have?

